Basis for Physiological Relevance of Nerve Cell Culture in 3D Scaffolds

Basis for Physiological Relevance of Nerve Cell Culture in 3D Scaffolds


It is widely accepted that cells grown in three-dimension (3D) culture more accurately mimic in vivo microenvironment. Numerous kinds of three-dimension culture methods have been reported with a wide range of physical, chemical and spatio properties. These culture methods mimic the in vivo microenvironment to a certain extent; however, for most of the 3D cultures, it is hard to state how close to the in vivo condition they are. Both academia and industry call for a standard biomarker for three dimensionality. A long-term goal in our laboratory is to explore the question of existence of biomarkers for different tissue type. As a first step, we are exploring the functional and structural characteristic indicator of three-dimensionality in nerve-derived micro tissue. This knowledge is a pre-requisite in early three-dimensionality biomarkers discovery experiment action. In this study, we are using a human neuroblastoma cell line (SHSY-5Y). Our hypothesis is that three-dimensionality in nerve tissue is characterized by low cytosolic calcium oscillation/spike frequency (functional) and high caveolae density (structural) in comparison to 2D cultures. We use the term “complex physiological \ relevance” (CPR) to describe such functional/ structural features that are exhibited only in three-dimension culture systems, but absent in its 2D counterpart.


Sina Mostafavi, University of North Carolina at Charlotte